-

CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS UCID- 18513

A JOINT GAUSSIAN PROBABILITY PLOT PROGRAM

S. G. Azevedo
D. T. Gavel

January 1980

This is an informal report intended primarily for internal or limited external distribution. The
opinions and conclusions stated are those of the author and may or may not be those of the
Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore Laboratory under Contract W-7405-Eng-48.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161



ABSTRACT

The analysis of joint-Gaussian distributions of two variables can be
aided greatly by meaningful graphical techniques. The program described
by this report performs such a task. Two elliptical equi-probability
contour plots of the probability density function are produced; one using
statistics from the raw data and the other using normalized (zero mean,
unit variance) variables. Several separate data sets of the same
variables may be plotted, for example, to compare estimators. The
techniques discussed here for interpreting the plots enable the user to

gain insight into the statistical information being displayed.
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INTRODUCTION

Analysis of errors in measurements, estimates, parameters, etc., is
frequently encountered in engineering applications. By virtue of
the Central Limit Theorem [1], many of these errors can reasonably
be assumed to have normal (Gaussian) distributions. In order to
ease the burden of numerical error analysis, graphical methods of
displaying the important statistical information have been
developed.[2] This report describes such a method for the

two-dimensional Gaussian vector case.

When confronted with a single Gaussian-distributed random variable,
it is not difficult to draw or visualize the probability density
function (pdf) given the mean and standard deviation. This allows
easy computation of confidence intervals or probability intervals
as is done often in sample statistics. However, with bivariate
Gaussian random variables, the pdf becomes projected in three-space
and the statistical properties are much less intuitively obvious.
We now become concerned with covariance and correlation [1], in

addition to the properties of the individual random variables.

The computer program described in this report, ECP2D, presents a
meaningful way of displaying these joint distributions. This is

done by plotting contours of constant probability density which
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have certain user-specified probability of containment within the
contour. In this way, the important information from the three
dimensional probability density surface is projected onto a planar
coordinate system as is done with topographical maps. In our case,
we are concerned only with Gaussian distributions, so these

contours are all elliptical in shape.[3] The projection is shown

in Figure 1.

If many separate experiments or trials each produce statistics
describing the joint pdf of two random variables, the contours of
each trial may be displayed on one plot for comparison. This
comparison provides the motivation for development of the ECP2D
program. The ellipses produced can be a means of ascertaining the
performance of one parameter estimator over another. However, it
is sufficiently general to be applicable to any bivariate Gaussian

random vectors.

Automatic scaling of the plot, and differences in units of the two
axes can cause distortion in the size and orientation of the
contours, so an alternative graphing method showing normalized data
was also developed. This provides much more information about the

correlation of the two random variables.



FIGURE 1: ELLIPTICAL CONTOURS OF THE
JOINT DENSITY FUNCTION IN
(X, X,) |
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In this report, we discuss:

. Contour Plotting Theory

. Program Usage

. Interpretation of the Output



IT.

THEORY

In this section, we develop the theory behind plotting an ellipse

of constant probability density. The fundamental problem can be

stated as:

Given the mean and the covariance matrix of a joint
Gaussian random vector in two-space, find an
equi-probability elliptical contour such that the

probability of containment within the ellipse is some

value, PA.

In order to solve this problem we:

1)
2)
3)

4)

5)

Show that a constant probability contour for a Gaussian pdf is
an ellipse;

Transform the ellipse to the origin;

Normalize the axes (circle); 7
Reconstruct the original (x-plane) ellipse for the calculated
value of PA; and

Calculate size of the ellipse.

After plotting this ellipse, a second plot is also generated for

displaying correlation between the two random variables.



II-1. E1lipse Equation

With the assumption of Gaussian random variables (call them

X3 and x2), the joint probability density function is

P(xy.%,) =W exp [-l/z(ﬁ-ﬁx) c (5-3,()] (1)

X
1
where x = = Gaussian random vector
X
2
H E(X])
B, = = = mean value of vector x
Hy E(xz)
‘no %2
C = = covariance matrix
a1 2
that is c‘ij = E[(Xi'u.i) (Xj'”j)] for i,j = 1,2

SO C12 = C2-| .
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Making p(x1,x2) a constant and solving for the quadratic

form in (1) we obtain:

(iTEX)T ¢ (x-n,) = b2

= 2 Ix

Expanding (2) we have the equation

O.(X-"'IJ])Z + ﬁ(xz-uz)z + Y(X]‘u]) (xz‘uZ) = b2

C
where o = 22 >
C11%22 - 2

C
. n )
C11%22 ~ 12

) 2c]2

Y= ?
C11%22 - C12

and b = scalar constant.

The matrix C is constrained to be positive definite [4]

because it is a covariance matrix. This constraint causes
(2) to be the equation for an ellipse in the x plane. The

constant b is related to the total probability distributed

within the ellipse, PA, (to be shown in Section II-5).

will assume that b is an arbitrary constant for now and

explain the procedure for locating and plotting the ellipse

defined by equation (2).

(2)
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II-2. Rotation and Translation of the Ellipse

To simplify the computation of the ellipse equations, we can
perform a similarity transformation upon the C matrix. We
constrain the transformed matrix to be diagonal which merely
‘rotates the coordinate axes to align with the major and minor
axes of the ellipse. Then subtracting the mean vector from x
translates the center of the ellipse to the origin (see

Figure 2).

The transformation we wish to make is:

y= 57 (xem) (3)
N
where y = = the transformed variable
Y2

and S is the transformation matrix.

- Then from equations (2) and (3),

———
|2
o
1o
———
4
S
]
o

or yD y=b (4)



Y, Y
2y M - ! (2-e)C' (x-wd= P
L BV AV /A 2 2
— 2 ’ ga(x,— u,)z-l- B( xz pp)=7(x~uXxzu)= b}
N
M X
Original Ellipse In x-plane ye S'l(x-g,) S= [cfto —sinO]
—_— e =2 * = |sing cosd

y -plone dpb 2

<1 ¥ . x
oy (4, b2~ (d,b)? !
e

M.

Translated and Rotated to the _y_-plano

FIGURE 2: TRANSFORMATIONS OF THE ELLIPSE
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where D = =s'CS

Notice that d% and dg are the variances with
respect to the y-coordinate system. Equation (4) can be
written alternatively as:

5,
—E? +

= b2

(= 8
NNN

so that (bd]) and (bd2) are the major and minor axes of

the translated-rotated ellipse (see Figure 2).

In order for the joint probability density function to remain
the same throughout this transformation, D and C must be
similar matrices [3] (C = §g§f]). Under a similarity
transformation, the determinant and eigenvalues are
unchanged. Since C is a symmetric matrix, this similarity

transformation specializes to an orthogonal transformation
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where §T = §f]. An S matrix which satisfies these

conditions is:
cos@ -sing
sin@ cos®
where 6 is the angle of rotation of the y-axes from the

x-coordinate plane. Now, from this transformation we can

derive that [3] (see Appendix B for details)

—_ N

7 7
Gyttt \ﬁcn - Cpp)7 #+ Aeyp) 6 )
= 7

<
|

2c
-1 12
= 1/2 tan —_— ( 7 )
[Cn - °22]

I11-3. Normalization of the Ellipse

With a second transformation, we can easily normalize to a
circle of radius b (see Figufe 2). The reasons for doing
this will become apparent later. We set V

=1y (8)
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1
where z = = the transformed vector
7 :
2
d, 0
and T =
— o d

Then from equations (4) and (8),

But by the definitions, T'D™'T = I (identity matrix) so

we obtain the circle equation (Figure 2)

2'z = b

buadi A ]
+
N
[N BAN]
]
(=4
[AV)

or 4

(9)
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IT-4. Reconstruct Original Ellipse

Now, given the points Z4 and zy which satisfy this
equation, we can easily reconstruct the x vector using
equations (2) and (8) which give:

x = 5Tz + (1)

This now illustrates the simple way'in which ECP2D calculates
the plot points for an ellipse. First, an array of
coordinate pairs representing the solution to equation (10)
is established. Then, by determining d |

d and 0, the

1272
points of the unit circle can be projected back to the
x-plane (Figure 2) with the transformation given in equation
(11). We must be careful however that 8 is in the correct

quadrant for valid reconstruction.

I1-5. Calculate Size of Ellipse (determine b)

Our problem of calculating the integrated probability within

)T ¢ (xep,) = b2

the ellipse, (5rgx X-u,

, ‘has now been simplified
to computing the probability within the circle z'z = b%. To find
this probability, PA (and the corresponding value of b), we.

integrate the joint probability density function over the
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area of the circle. This can be shown by starting from

equation (1) and integrating in the X space:

T -1
ff 2n| exp [-1/2 (x-p,)" C ("'Bx)] dxqdx,  (12)

where A is the interior area of the ellipse defined by

T ~-1

(x-p,)" € (x-u)

Now, from the definitions of T and S by the transformations

described earlier,

)
]
w
_'
—.‘
w

So, substituting (13), (14), and (15) into (12) we get

1 T
Py = exp [-1/2 g.z] dxqdx, .
* /fAan”? S

(13)

(14)

(15)

(16)
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The next step is to change the variables of integration so that

we integrate over the z-space. The formula for this is [6]:

g e

ax
5;‘ az]az2 . (17)

ad -

ax] ax]
B az] 322
where a7 o "
2 2
az] 822

It is easy to show, using Equation (14), that

EEG

so,
_ 1 T
Pp = 75 E€XP [-1/2 z'z| dz,dz, (18)
A

The integration area, A, is the area inside the circle, ET&

=b2

. For easy integration, we can convert to polar coordinates:
b

T
PA = f f '?% exp (-1/2r2) rdedr
r=0 “p=-n

b .12
= ./- re Z dr (19)
0
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"

where r = radial distance = z% + zg

=]
"

1 22
angle from z,-axis = tan —
1 Z,

Performing the integration we arrive at

then solving for b2

b% = -24n (1-p,) ( 20 )

If we wish, for example, to plot the ellipse within which 95%

of the x values can be expected to lie, we use equation (2)

2

with b® set equal to

2

b® = -2en (1-.95) = 5.99

When b = 1,2, or 3, we encounter the often used one-, two- or

three-sigma probability contours [3,5] (see Table I).
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Table I: b-Sigma Probability Distribution Values

b Pa

1 .394
2 .865
3 .989

I11-6. Correlation Plot

In an effort to obtain more visual information from the data,
we present a second contour plot we call a correlation plot.
For this plot, another transformation is performed to a
coordinate system where the variance in both directions is
normalized to 1. We merely show here how the transformation

is implemented, and present later the interpretation of the graph.

The elliptical plot produced in the previous sections
graphically illustrates a contour of particular likelihood
for the vector x. But what if the units or the orders of
magnitude of the two varibles, X1 and Xy, are vastly
different? We may still wish to see the first plot of the
original two-space ellipse, but distortion caused by scaling
may give misleading information with respect to correlation

or dependence of the two random variables.
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For that reason, a second plot is created which gives
normalized information for a better display of the
comparisons between X1 and Xp. This is performed by the

following transformation.

x* = N (x-p) (21)
*
*
where x* = x| = the normalized vector
X
2

and N is the normalization matrix.

Then from equation (2)

(T et = b?
or el = b2
* 2 *, 2 * x 2 2
or (x] )¢+ (x2 )& - 2px] Xy = b= (1-p") (22)
where-

1 p T
G = = NCN' = Correlation matrix

€12
p = ———— = Correlation coefficient

€11¢22
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so by algebraic manipulation

— 0

=
"

This gives us a new Gaussian random vector, x*, (see Figure
3), with zero mean and unit variance. The plot of the
contour in the x*-space gives us an indication of the
correlation of the original vector, x. An explanation on how

to interpret this data is given in the next section.
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(5‘3;)T M (x—g)= b2

x2 A\
_.__—b“-- xtTG_l X. =b2
b e I.-b : ! > 2 «2
1: / b X (x)+(xp) ~2p xl‘x;=b2(;-p2)
| ‘_,i
5[ bip®

Transformed Ellipse

FIGURE 3: TRANSFORMATION TO CORRELATION PLOT
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ITT. PROGRAM EXECUTION

This section explains the usage of ECP2D and how to interpret the
~output. A general flow diagram of the program is shown in Figure 4.

Also presented is a sample application involving estimation schemes.

IT1I-1. User Options

The program has been designed for ease and flexibility of
use. Several possible input options are available to the

user for producing the output desired.

For a bivariate normally distributed random vector x with
mean p and covariance matrix C, let x(1),x(2),...,x(N)
be a set of data. Many such data sets may be processed and

plotted for either of two cases:

1) The data x(1),x(2),...,x(N) is preprocessed (i.e.,
B and C are known, or estimates of p and C
are available) and then only My and C are inputted-
to the program for each data set. The C matrix must be

positive definite.

2) The raw data x(1),x(2),...,x(N) is inputted for each

data set,
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READ
INITIAL
DATA

LOOP FOR
EACH DATA SET
4

WHAT
TYPE OF
INPUT
?

COMPUTE
Hx ©

PREPROCESSED

OouTPUT
DATA SET
INFORMATION

FIGURE 4: GENERAL FLOW CHART OF ECP2D

LOOP FOR COMPUTE
EACH PROBABILITY ELUPSE
PLOTTED CURVE
.
PLOT ELUPSES
X X}

9

NORMALIZE TO X*

PLOT NORMALIZED
ELUIPSES (X', Xg)
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Up to ten different ellipses, corresponding to ten
probability values, may be plotted for each data set on the
same graph. In addition, any constant coordinate pair

(Tabelled x]true, XZtrue) can be plotted for comparison.

Input File Format

The input file for ECP2D must be present on the disc at the
start of execution and must be named ECPIN. This file
allows the user to specify certain plot optfons as well as
the problem parameters. Table Il gives a description of
each field in the input file. Table III lists the input
fields and their corresponding formats. WNotice th;t lines
four and five are repeated for each of the data sets to be

input.

Sample Input for ECP2D

An application of this plotting program is to compare the
performance of several estimation schemes for identifying
some constant parameters (e],ez) of an arbitrary

mathematical system. For this problem:

1) Each data set corresponds to N trials of an estimation

scheme.
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Table II: Input File Field Description

Line 1 General Parameters for Plot

M - Number of data sets to be input
L - Number of contours to draw for each data set
LBLX - Label for the xj-axis of the plot

LBLY - Label for the xp-axis of the plot

Line 2 True Value of the Vector x

ITFLAG - Do you know the true value of both xy and
xp? (@=NO, 1= YES)

X1T - True value of xj (if known)

X2T - True value of xp (if known)

Line 3  Probability Values for the Plot

PR(1), ...., PR(L) - Probability values for each contour
(must be between 0 and 1)

REPEAT THE FOLLOWING LINES FOR EACH DATA SET (M times)
Line 4 Data Set Input Parameters

MP - Is input (for this data set) raw data or
preprocessed? (@ = Raw, 1 = Preprocessed)

N - Number of data points (if MP = 0)
Line 5 Data Set Input
If MP = O:

X1(1),%X2(1), ..., X1(N), X2(N) - Raw Data Points;
x(1)5..05%(N)

If MP = 1:
XE1,XE2 - Mean Values of xj and xp
P11,P22 - Variance of xj3 and x»

P12 - Covariance of xy and x2
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Table III: Format of Input File

Line Variable Name

1

S W

M,L,LBLX,LBLY

ITFLAG,X1T,X2T

PR(1),....,PR(L)

MP,N

If MP
If MpP

won

0
]

X1(1),X2(1),...XT(N),X2(N)
XE1,XE2,P11,P22,P12

Format
(215,2A10)
(12,2€16.7)
(10F6.4)
(12,15)

(2£16.7)
(5£16.7)
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2) %;(1),...,%5(N) are estimates of @ = [91921T
for each set i, and the sample mean and covariance

are used to approximate the (Hx)i and C;.

3) The true (known) value of @ is plotted as x, . ..
The input file for this application, with two estimators
(data sets), is shown in Table IV. The data shown in lines
4-14 and lines 15-16 can be thought of as estimated values
of parameters 6] and 6, from two different estimation
schemes. Notice that the first data set is in raw form
with N=10 and the second data set is given in "pre-
processed" form. A discussion of the output is given in

the next section.

Sample Problem

The standard output obtained from ECP2D is shown in Figures
S through 7. Figure 5 gives pertinent self-explanatory
numeric information with regard to the plots. The
probébi]ity values used are the one—sigma; two-sigma, and

three-sigma values for a two-dimensional Gaussian random
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Table IV: Example Problem Input File

Line #

2,3, THETA 1 THETA 2
1,1.E-08,5.E~-07,
.394,.865,.989,

0,10,
1.003760E-08,4.8368E-07,
1.00439CE~-08,4.8295E~07,
1.605415E-08,4.8183E~07,
1.005429E-08,4.8174E-07,
1.005456E-08,4.8181E~07,
1.005590E-08,4.8172E-07,
1.005790E-€8,4.8163E-07,
1.005174E-08,4.8209E-07,
1.004282E-08,4.8309E-07,
1.005730E-08,4.8156E~07,

U SV PP pa y—
YT ) N =X (O00 I 5 LWND—

1,,
9.99E-09,5.04E-07 .7 .E~23,8.E-19,5.E-21,
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vector. The angle of the major axis of the ellipse from
the X1 axis (between -90 and +9d’) is calculated and
displayed along with the diagonalized variances (d% and

d%; the eigenvalues of C). Also, the correlation

coefficient (p) is shown; if p = 1, we have maximum
correlation between X, and Xos if p = -1 we have
maximum negative correlation, and if p = 0 we have no

correlation between the two variables.

In Figure 6, the plots of the two data sets are displayed.
The size of the two contours gives an indication of the
relative precision of each estimator; i.e., the curves for
data set A are smaller than those for data set B, so
estimator A is more precise in its estimate. Accuracy of
the estimators, on the other hand, can be observed by the
relative distance of mean value points from the true value
(the large black dot). This is called the bias of the
estimator and it indicates low accuracy when the bias is
large. Notice in Figure 6 that although estimator A
produces more precise estimates than B, there is also a

larger bias in the A estimates indicating less accuracy.

Note, also, that the apparent angle of rotation of the
ellipses does not correspond to that reported on Figure 5.
This is due to the distortion caused by scaling since Xq

and X, have vastly different units and values.
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TWG-SPACE PROBABILITY PLOT

TRUE VALUE OF X1
TRUE VALUE OF X2

PROBABILITY VALUES OF
0.3940 0.8650 0.9820

DATA SET NO. 1
SAMPLE MEAN OF X1
SANMPLE MEAN OF X2
SAMPLE VARIANCE OF X1
SAMPLE VARIANCE OF X2
SAMPLE COVARIANCE
CORRELATION COEFFICIENT
ANGLE OF MAJOR AXIS FROM X1 (DEGREES)
DIAGONALIZED VARIANCES

DATA SET NO. 2
SAMPLE MEAN OF X1
SAMPLE MEAN OF X2
SAMPLE UARIANCE OF X1
SAMPLE VARIANCE OF X2
SAMPLE COVARIANCE
CORRELATION COEFFICIENT
ANGLE OF MAJOR AXIS FROM X1 (DEGREESY
DIAGONALIZED VARIANCES

: 1.000E-08
H S.000E-07

CONTOURS

: 1.00SE-08
H 4.822E-07
: 4.913E-23
: S.SS4E-19
¢ ~S.196E-21
: =9.,948E-01
t ~89.4640

: S.SSSE-19

9.990E-09
S.040E-07
7.000E-23
8.000E-19
S.000E-24
.9,S72E-01
89.6419
8.000E-12

S.{33E-25

3.87%E-23

Figure 5: Typical Output Information Display
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Therefore, we can obtain general relative information about
the properties of the two data sets, and directly read the
means and standard deviations (max X1 value on the
one-sigma plot minus My, 1S c]), but we cannot inter-

pret the correlation of the two variables from this plot.

For that purpose, we turn to Figure 7 which displays the

normalized results. Here we plot

| >
"

N(x-p,)

Xq-H Xn=H
Rt B * "2 P2
5, and Xy =

>
- *
|

or

where o and o, are the standard deviations of X3

and X5 respectively. Now the two variables are
dimensionless so the relationship between them is more
apparent. In fact, only the correlation coefficient (p) is
available from the graph. Figure 8 shows how different

correlation coefficients affect the orientation of the graph.

Thus, we see that the e] parameter and 62 parameter are
highly (but negatively) correlated in data set A (of
Figure 7), but not as highly (and positively) correlated
in data set B. So with one estimator, the estimates are
very highly dependent on one another, but less so with the

other estimator.
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PERFECT POSITIVE CORRELATION
(p=1)

PARTIAL POSITIVE CORRELATION
(O< p<i)

Q NO CORRELATION; UNCORRELATED
-~ (p=0)

PARTIAL NEGATIVE CORRELATION
(-l< p < 0)

PERFECT NEGATIVE CORRELATION
(p=~1)

FIGURE 8 : DETERMINING CORRELATION OF TWO
RANDOM VARIABLES FROM THE NORMALIZED
CONTOUR PLOT
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SUMMARY

We have shown how to display the statistical information contained
in a Gaussian random vector in two-space. The computer program
ECP2D was developed as a data display/interpretation tool for use

specifically in comparing parameter estimates [77.
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APPENDIX A

Source Code Listing for ECP2D
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SCHAT (TV8OLIB,ORDERLIB,STACKLIB,EE, ~) %ZME ¥%ME B7ZME L%ME N93 S § 80
PROGRAM ECP2D(ECPIN,TAPES=ECPIN)

CHRERERKRAKRR KRN R KB KR RR KKK KKK KR RKRIK KRR KKK R KKK RE KK KRKEK KRR KR KRR KKK
C#

C* DESCRIPTION

Cx THIS PROGRAM PLOTS ELLIPSES OF CONSTANT LIKELIHOOD

C* FOR TWO GAUSSIAN RANDOM VARIABLES. A WRITE-UP ON THE

C* THEORY OF OPERATION IS AVAILABLE IN A SEPARATE REPORT.

C*

Cx AUTHOR -- STEVE AZEVEDO L-156 X2-8538
Cx*

Cx AVAILABILITY -- CDC 7600

C*x

Cx EXECUTE LINE -- XECP2D » T V

Cx

CRRBKRRKRK KR KR XK R RRILKR KRB KKK KR KRR NRHR KR KR E KKK R RARK R KK KR KR KRR TR KR
C

C.....MN - MAX NUMBER OF MEASUREMENTS
C.....ML - MAX NUMBER OF CONRTOURS TO PLOT
C...vt MM - MAX NUMBER OF DATA SETS TO PLOT
C.....HNP - NUMBER OF POINTS TO PLOT CN EACH ELLIPSE
PARAMETER (MKR=100,ML=10,MM=10)
PARAMETER (NP=100)
PARAMETER (PI[=3.1415926535898)
DINENSION X1 (MN,MM),X2(MN,MM)
DIMERSION X(NP,ML,MHIi),Y(NP,ML,M})
DIMENSION PR(ML)
DIMENSION XE!1 (MM) ,XE2(MM),S1 (MM ,S2(MM)
DIMENSION WX(NP),WY(NP)
C
CRREA AR IR IR KKK KRR K KRB KKK KRR R KK KRR R KRR RKK KK RRRR KR KK KR
C#* PROGRAM INITIALIZATION
CRABANTIKK AR KRR AR KKK KRR ARK KK KKK KK AKRKK KR KKK R RRRKK KK RKKRRRRKK R
C
CALL CHANGE("+XECP2D")
Cc
C.....INITIALIZE PLOTTING FOR FR80 105MM FICHE (BUT KEEP FIRST)
Cc

CALL FR8BOID(9HF1LM-ONLY,0,1,90)
CALL KEEP8@(106H ECPS6,3)
CALL DDERS(-1)
CALL SETCH (7.,42.,1,0,1,0)
WRITE(100, * (20X, * "TWO-SPACE PROBABILITY PLOT"")")
C
<.....COMPUTE POINTS OF A CIRCLE (RADIUS=1)
c .
DLTA = 2.%PI/(NP~1)
ALPHA = 0.
DO DLO2 I=1,NP
WX(I) = COS(ALPEA)
WY(1) = SIN(ALPHA)
ALPHA = ALPHA + DLTA
DLO2 CORTINUE
C
CHRRNRAE K KRR KL AR K R AN RN KPR KK R IR RE KRR X RRRLERE KRR KK RRERERER R
C* READ THE INPUT FILE (ECPIN)

CRRRER KKK KKK KR KKFKKKE KKK KRR AR KRR KKK R KRR K KRR R KRR KRKKFRR KKK



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
w7
78
79
80
&1
82
83
84
85
8¢
8v
88
89
90
91
92
93
94
95
96
97
98
90
1090
101
102
1e3
104
105
106
107
108
109
110
111
112
113
114
115
11¢
117
118
119
120

C
C
C

Cc
Cc
Cc

aaanan

C
C

OAaAaAa O

C
C
Cc
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«««+.LINE 1. READ NUMBER OF DATA SETS AND CORTOURS
M - NUMBER OF DATA SETS
L - NUMBER OF CONTOURS
LBLX - LABEL FOR X-AXIS
LBLY - LABEL FOR Y-AXIS
READ(5,"(215,2A10)") M,L,LBLX,LBLY
IF (M.GT.MID TRER '
WRITE(59, " (1X,/,"" ERROR--T0O MANY DATA SETS; M = "*,I5)") M
CALL EXIT(1)
ENDIF
IF (L.GT.ML) THEN
WRITE(52,"(1X,7/,"" ERROR--TOO MANY CONTOURS; L = *"",I%)*") L
CALL EXIT(1)
ERDIF

.+«.+«.LINE 2. READ TRUE VALUES OF XIl AND X2
ITFLAG = 1 IF 'TRUE VALUE IS KHOWN
@ IF NOT
X1T - TRUE VALUE OF X1
X2T - TRUE VALUE OF X2

READ(S,"*(12,2E16.7)") ITFLAG,XIT,X27
IF (ITFLAG.NE.O) TIHEN
WRITE(100,°(/,22X,"*"TRUE VALUE OF X1 : "",E12.3)") X1T
WRITE(160, " (23X, ""TRUE VALUE OF X2 : *"",E12.3)") X2T
ENDIF

«+++..LIKE 3. READ CONTOUR PROBS. (BETWEEN 0. AND 1.); SAME FOR EACH DATA SET
READ(5,"(10F6.4)") (PR(I),I=1.L)
WRITE(100, " (/,18¥, *"PROBABILITY VALUES OF CONTOURS"")")
WRITE(100,"(10(F6.4,2X))") (PR(I1),I=1,L)

DO DL1© K=1.M

««++ NEXT LINES. READ PATA SETS
MP = @ IF RAW DATA INPUT
1 IF ONLY X-MEAN AND COV. MATRIX INPUT
N - NO. OF SAMPLE POINTS (IF MP=0)
READ(3,"(12,15)") MP,N
IF (MP.EQ.1) THEN
READ(5,"(5E16.7)*) XE1(K),XE2(K),C11,€C22,C12
N=0
IF ((C11%C22).LT.(C12%C12)) THEN
WRITE(59,"(/** ERLCR--COV MATRIX NOT POS DEF; SET #**,15)") K
CALL EXIT(1)
ENDIF
ELSE
IF (N.LT.2) THEN :
WRITE(59,"(/*" ERROR--NOT ENOUCH DATA; SET »"*,I5)") K
CALL EXIT(1) :
ENDIF .
READ(S5,"(2E16.7)") (X1(I),X2(1),I=1,N)

«e...CALCULATE SAMPLE MEAN, COVARIANCE MATRIX, AND MAX-MIN VALUES

XE1(X)=XE2(})=C11=C12=C22=0,
ST =Xrin1=X1 (1)
XMX2=YMN2=X2(1)

DC DLOI I=1,N

XE1(K) = XE1(K) + X1(I)



121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

DLO1

148 C
C.....DIAGORALIZE (ROTATE) THE MATRIX

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170

Cc

171 C

172
173
174
175
176
157
178
179
180

C
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XE2(K) = XE2(K) + X2(1)

Ci1 = C11 + (X1(I)*X1C(I))
C22 = C22 + (X2(1)*xX2(I1))
C12 = C12 + (XI1(1)xX2(1))

IF (X1(1).GT.XFX1) XMX1=X1(I)

IF (X1(1).LT.XMN1) XMN1=X1(])

IF (X2(1).GT.XMX2) XMX2=X2(I)

IF (X2(I).LT.XMN2) XHMN2=X2(l)
CONTIRUE

C11 (C11 - (XE1(K)*XE1(K)/K))/(KR-1)

C22 = (€22 -~ (XE2(K)*XE2(K)/N))/(R-1)
Ci12 = (C12 - (XEI(K)*XE2(K)/N))/(N-1)
XE1(K) = XE1(K)/N
: XE2(X)/N

~

~

A4
"o

IF (C11.1.E.0.) THEN

WRITE(59, " (/" "ERROR~-X1 VARIANCE REG OR O; SET #""

CALL EXIT(1)

ENDIF
IF (C22.LE.®6.) THEN
WRITE(59, " (/" *ERROR--X2 VARIANCE NEG OR 0; SET #"*",I5)") K

CALL EXIT(1) :

ERDIF

S1(K)
S2(K)

= 1./8QRT(C11)
= 1,./SQRT(C22)

CORCOEF = S1*x52%Cl12

IF (C12.€Q.0.) THEN

THETA = O.
ELSE
IF (Ci1.EQ.C22) THEN

IF (C12.LT.0.) THEN
THETA = -Pl/4.
ELSE
THETA = Pl/4.
ENDIF
ELSE
THETA = .5%ATAN(2.%C12-/(C11-C22))
IF (Ci11.LT.C22) THEN
IF (THETA.LT.0.) THEN
THETA=THETA+PI1/2.
ELSE
THETA = THETA - P1/2.
ENDIF
ENRDIF

ENDIF

ERDIF

DISCR = SQRT((C11-C22)%¥2 + 4.%C12xC12)

D1 =
D2 =

(C11+C22+DISCR) /2.
(C11+C22-DISCR) /2.

1F (D2.LT.06.) D2=C.

C.....COMPUTE A CONSTANTS

Cc

D1S
D2s

SQRT(D1)
SCRT(D2)

J15)") K
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181 THC = COS(THFTA)

182 THS = SIN(THETA)

183 All = DISXTHC

184 A12 = -D2SxTHS

185 A21 = DISxTHS

185 A22 = D2S*THC

187 €

188 C.....WRITE THE INFORMATIOR INTO THE PLOT FILE

189 C

120 WRITE(1€0,"(//,""DATA SET KO. "*,12)") K

191 WRITE(100, " (22X, ""SAMPLE MEAN OF Xt : "",E12.8)") XE1(K)
192 WRITE(100, " (22X, " “SAMPLE MEAN OF X2 : *" E12.3)") XE2(K)
193 WRITE(100, " (18X, ""SAMPLE VARIANCE OF X1 : "",E12.3)") CI1
194 WRITE(100, " (18X, "“SAMPLE VARIANCE OF X2 : *" E12.3)") C22
195 WRITE (100, " (22X, ""SAMPLE COVARIANCL. : """ ,E12.8)") C12
196 WRITE(106€," (16X, ""CORRELATION COEFFICIENT : *"*,F12.3)") CORCOEF
197 THETA = 189 .%THETA/PI

198 WRITE(160,F16) THETA

199 F10 FORMAT(" ANGLE OF MAJOR AXIS FROM X1 (DEGREES) : *,F8.4)
260 c WRITE(100," (17X, ““DIAGONALIZED VARIANCES : *",2E12.3)") Di1,D2
201

2e2 C.....COMPUTE ELLIPSE CURVES

2e3 C

264 DO DLe4 J=1,L

205 ARG = -2.%ALOG(1.-PR(J))

206 B = SQRT(ARG)

207 C

208 DO DLe3 I=1.NP

209 X(I,J.,K) = AL1*B*WX(I) + A12*B*WY(I) + XE1(X)

210 Y(I,J,K) = A21%BXWX(I) + A22xB3WY(l) + XE2(K)

211 IF (X(1,J,K).CT.X1MX1) XMX1=X(1,J,K)

212 IF (X(I,J,K).LT.XMN1) XMN1=X(i,J,K)

213 IF (Y(1,J,K).GT.XNX2) XMX2=Y(1,J,K)

=14 IF (Y(1,J,X).LT.XMN2) XMN2=Y(I,J,K)

215 DLO3 CORTINUE

216 DLO4 CONTIRUE'

217 DL1¢ CONRTINUE

218 C

219 CREEREXKXAKRIERREEEERREERRERRKERRKRXRZRKK KR NERRRERRRRRE KRR
220 Cx PLOT THE RESULTS

D21 CRRRERARRRKKFRINHRIK KRR TR RRERKKRRRKERKKE KRR KKK KKK KRR K KKK KKK

222 C

223 CALL FRAME

224 IF (ITFLAG.NE.@) THEN

225 IF (XIT.GT.XMX1) XMX1=XI1T

226 IF (XIT.LT.XHMN1) XMN1=XIT

27 IF (2T.CT.XMX2) XMH2=X2T

228 - IF (X2T.LT.XMN2) XMN2=X2T

229 ENDIF

220 AMX = .05x(XpX1-N¥MN1)

231 AMY = .05k (XMX2-XMN2)

232 XMX1 = XMX1 + AMX

233 XIN1 = XMN1 - AMX

234 XMK2 = XMX2 + AMY

235 XMNZ2 = XMU2 - AMY

225 C

a3v CALL MAPS/XMN{ . XMX1,XN2.XMX2,.1,.999,.15,.999)
238 IF (ITFLAG.NE.v}» CALL POINTC(1Hx* ,XIT,X2T,1)
239 C

240 NCHAR = 1HA
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DO DL66 K=1,M

CALL POINTS(X1(1,K),%x2(1,K),N)

CALL LiNEP(XE1(K),XMN2,XEl (K) ,XMX2,4)
CALL LINEP(XMN1,XE2(K),XMX1,XE2(K),4)

DO DLO5 J=1,L
CALL SETCRT((X(1,J,X),Y(1,J,K),0,17?7B)
CALL TRACEC(NCHAR,X(1,J,K),Y(1,J,K),NP)
DLe5 CONTINUE
NCHAR=NCHAR+1000006000000002000D
DLO6 CONTINUE

CALL SETCH(42.,3.,1,0,1,0)

WRITE(100.F0) LDLX

CALL SETCH(1.,42.,1,0,1,1)

WRITE(100,F@) LHLY
Fo FORMAT(A10)

CALL FRAME
C
CHREERILRE AR R KR LKL R R KRR EKREKEERERRER KR RRRKERRLRRLRRRRRRR
C* COMPUTE THE NORMALIZED RESULTS
CRkEkkRpRR KKK F KK KRR RE KKK KRR RR KKK T RERRKERRRRRKRKRKK KR
C

XMN1=XMX1=XMI{2=XM{2=0.
C

DO DL22 K=1,M

DO DL2i J=1,L

DO DLZO I=1,HP

X(1,J,K) = S§1(K)*(X(I,J,K)-XE1(K))

Y(I,J,K) = S2{K)*(Y(I,J,K)-XE2(K))

IF (X(1,J,K).GT.XMX1) XMX1=X(I,J,K)

IF (X(1,J,K).LT.XMN1) XMN1=X(1,J,K)

IF (Y(I1,J,K).GT.XMX2) XMA2=Y(1,J,K)

IF (Y(1,J,K).LT.XMN2) XMN2=Y(I,J,K)
DL20 CONTINUE
DL21 CONTINUE
DL22 CONTINUE
c
CRERREZRK KR KK NRERE KRR L RE R KKK R K RER KKK RRKRRRIRIRRRRRRRERRRR
Cx* PLOT THF. NORMALIZED RESULTS
CREEFREERERKRLERKKKLR LR KRR LXK RKRRRKRRRRRRKRKRR KK IRR R KK RRRK
c

AMX = .05:%(XMX1-XMN1)

AMY = .05%(XIMX2-XMN2)

XMX1 = XMD{l + AMX
XKMN1 = XMN1 - AMX
XMK2 = XMX2 + AMY
XMN2 = XMN2 - AMY
c
CALL MAPS (XMN1,XMX1 ,XMN2,XMV2,.1,.999,.15,.999)
CALL LINFP(®.,XMN2,0. ,XMX2,4)
CALL LINEP(XMN1,0.,XMX1,0.,4)
c
NCHAR = 1HA
DO DL25 K=1,M
c

Do bL24 J=1,L

CALL SETCRT(X(1,J,K),¥(1,J,K).0,1777B)

CALL TRACEC(NCHAR,X(1,J.K),Y(1,J,K),NP)
DL24 CONTINUE
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301 NCHAR=NCHAR+1000€00000000000000B

302 DL23 CONTINUE

303 C

304 CALL SETCH(42.,3.,1,0,1,0)

365 WRITE(1006,F1) LBILX

306 CALL SETCH(I.,42.,1,0,1,1)

807 WRITE(109,F1) LLLY

308 F1 FORMAT(A10,* - NORMALIZFD")

309 C

810 Ckkikkiokkkkriskkkaikkkkk ki kR KRR R R R R R R R R RRR RN
311 Cx* END PLOTTING -- CHECK THE TIHME, THEN QUIT

812 Ckkkkkikikkkkkkikirikitiniknikkikiirkkiirkkkkrkkirkikkkkkksk
313 C :
314 CALL TICHEK(IT1,IT2)

315 1T2=1T2/1050000

316 WRITE(59,FM1) IT2,IT1
317 FM1 FORMAT(/ ,16,A190)

318 C

319 CALL EXIT(1)

' 820 END
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APPENDIX B

Proof of Equations 6 and 7
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Problem: Transform a known 2 x 2 symmetric matrix (C) to a diagonalized

form using an orthogonal transformation; i.e., find

the equations:

¢ = 557!
df 0
where .g = 2
0 df

By simply multiplying through the right side,

_ 2 2 2 .2
cH = d] cos 9 + d2 sin 0

2 and 6 from

(B-1)
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Cop = d% sinze + dg cosze _ (B-2)

2

= o3 2
Cqp = Sind cosd (d] - d2) (B-3)
Now by subtracting (B-2) from (B-1):
142 2 2 . 2
Ci1 = Cop = (d] - dz) {(cos“6 -~ sin“@)
= (a2 - dl) cos 26 (B-4)

then (B-3) becomes:

‘11 ~ %22
C-IZ = sin® cosH w]

_ ¢sin 20 1
= ( 2 )(cos 26)(C11 - CZZ)

which gives

2c]2

tan 26 = ——8M—
11 - 22
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and 8 =1/2 tan”

Now, summing equation (B-1) and (B-2), we get

So, with (B-4) and (B-6)

2 Cqq - C
d 1 22
1 (C11 * C22) * cos 20
2 | ¢
ds
But, from (B-5)
cos 26

"
(@]
(@]
»n
ﬂ
o
=1
'
——
N
(@]
anwd
— | M
(@]
1]
™~
o
\)
™~
\/

(B-5)

(B-6)

(B-7)
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so,
2
d 72
Wl eptcpt Jier - e+ ac],
2
2
922

Equations (B-5) and (B-8) are equivalent to equations (6) and (7). This

can also be proved by noting that d? and dg are merely the eigenvalues

of C and that the columns of S are the eigenvectors. Then, by solution

of the eigenvalue-eigenvector problem, we achieve the same results.

When evaluating these equations by computer, we must be certain that the
eigenvalues correctly correspond to their associate eigenvector.

Otherwise, a 90" shift of the ellipse may result.

(B-8)



